กินอาหารอย่างไร? ให้เหมากับ ยีน
การศึกษาหา ยีน หรือ พันธุกรรม ที่สอดคล้องกับอาหารหรือสารอาหารที่รับประทานเข้าไปว่า ช่วยส่งเสริมสุขภาพให้ดีขึ้นได้อย่างไร และ มีความเกี่ยวข้องกับโรคที่เกิดจากพฤติกรรมการดำรงชีวิต หรือกลุ่มโรค NCDs ( Non-Communicable Diseases)
NCDs คือ กลุ่มโรคที่ไม่ได้เกิดจากเชื้อโรคและไม่สามารถแพร่กระจายจากคนสู่คน เช่น
- โรคทางระบบหัวใจและหลอดเลือด เช่น โรคความดันโลหิตสูง โรคหลอดเลือดหัวใจ
- โรคหลอดเลือดสมอง
- โรคเบาหวาน
- โรคมะเร็งต่าง ๆ
- โรคระบบทางเดินหายใจเรื้อรัง เช่น โรคปอดอุดกั้นเรื้อรัง ถุงลมโป่งพอง
- โรคไตเรื้อรัง
- โรคอ้วนลงพุง
- โรคตับแข็ง
- โรคสมองเสื่อม
จากการศึกษาทางวิชาการ และทางคลินิกวิทยา ให้ข้อมูลที่สนับสนุนถึงความสัมพันธ์ของ Nutrigenesis กับ การรักษาและป้องกันของผู้ป่วยในกลุ่มโรค NCDs ที่มีอัตราการเสียชีวิตที่สูง จากการรายงานของ WHO อัตราการเสียชีวิตทั่วโรค คือ 40 ล้านคนต่อปี (76 คน ต่อ นาที)
มีการศึกษาค้นคว้ามานานถึง 20 ปี
- จากการค้นคว้าจากผู้เชี่ยวชาญทั่วโลก ตลอดเวลา 20 ปี นั้นพบว่า Nutrigenetics/nutrigenomics มีส่วนสำคัญมาก ไม่ใช่แค่ใช้ในการรักษาหรือป้องกันโรคกลุ่ม NCDs เท่านั้น ยังสามารถช่วยส่งเสริมสุขภาพพื้นฐานเพื่อป้องกันการเกิดโรคเหล่านี้ได้อีก
- การทานอาหารให้เป็นยา จึงควรเลือกทานอาหารที่เหมาะกับร่างกายเราเช่นกัน
เกี่ยวข้องอะไรกับกลุ่มโรค NCDs
- จากงานวิจัยพบว่า
- โรคอ้วน (obesity) เป็นภาวะที่มีไขมันสะสมในร่างกายมากกว่าปกติจนเกิดผลเสียต่อสุขภาพ (ไม่ได้ขึ้นกับขนาดร่างกาย ขึ้นกับค่า BMI > 30) โดยปัจจุบันประชากรโลกถึง 10% มีสภาวะนี้ โดยเฉพาะในเด็ก พบถึง 100 ล้านคนทั่วโรค โดยสาเหตุหลักเกิดจากการได้รับสารอาหารที่ไม่ดีต่อสุขภาพ และที่สำคัญคือ ระบบร่างกายไม่สามารถทำงานได้อย่างเต็มประสิทธิภาพ ซึ่งเกิดจากยีนที่ควบคุมความหิวและความสามารถในการเผาผลาญสารอาหารแต่ละประเภท ที่คนเรามีไม่เหมือนกัน ดังนั้นการรับรู้ข้อมูล Nutrigenetics สามารถทำให้เราวางแผนด้านโภชนาการให้เหมาะสมกับร่างกายเราอย่างแท้จริง
- โรคเบาหวาน ชนิดที่ 2 (type 2 diabetes mellitus) ผลพวงมาจากหลายสาเหตุ เช่น การดื้อต่อฮอร์โมนอินซูลินและโรคอ้วนร่วมด้วย ดังนั้นการทราบถึง Nutrigenetics จะทำให้เราทราบถึง การบริโภคอาหาร ควรมีปริมาณแป้ง และ ไขมันอิ่มตัวเท่าไหร่ จึงจะเหมาะสมกับร่างกายเราจริง ๆ
- โรคมะเร็ง จากการศึกษาตั้งแต่ปี 1980 พบว่า การทานอาหารที่ไม่สมดุล ทั้ง 5 หมู่ เป็นปัจจัยหนึ่งที่สำคัญ ที่เซลล์มะเร็งค่อยก่อตัวอย่างเงียบ ๆ ในร่างกาย ไม่รวมถึงปัจจัยเสี่ยงอื่น ๆ ในการใช้ชีวิตประจำวันเช่น การดื่มแอลกอฮอล์, การสูบบุหรี่, การไม่ออกกำลังกาย และการรับสารก่อมะเร็งอย่างต่อเนื่อง การทราบข้อมูล Nutrigenetics จะทำให้เรารู้ว่า เราควรรับประทาน micronutrition (วิตามินและแร่ธาตุ) อย่างไร เพราะการทานสารอาหารให้สมดุลถูกต้องตามร่างกายต้องการ จะทำให้การทำงานของ DNA คงที่ ลดการกลายพันธุ์ของเซลล์ ที่อาจจะเปลี่ยนจากเซลล์ธรรมดาเป็นเซลล์มะเร็งได้
- โรคเกี่ยวกับเส้นเลือด ที่อาจจะก่อให้เกิด โรคหัวใจวายเฉียบพลัน, โรคความดันสูง, เส้นเลือดในสมองอุดตัน และ หัวใจเต้นผิดจังหวะเป็นต้น โดยสาเหตุหลักมาจากการทานอาหาร ที่มีไขมันประเภท ไขมันอิ่มตัวและไขมันทรานสูง ทำไม บางคนทานมากกลับพบค่าไขมันในเลือดต่ำกว่าคนทานน้อย สาเหตุที่คุณไม่รู้ คือ ยีนที่ควบคุมกลไกลเหล่านี้ เช่น ร่างกายเราสามารถ สร้างไตรกลีเซอไรด์ ได้เอง หากสูงเกินไป ยีนที่ควบคุมระดับไตรกลีเซอไรด์ จะทำงาน ปล่อยตัวยับยั้งไม่ให้ร่างกายสร้าง หากเราได้รับเพียงพอแล้ว แล้วยีนของคุณ ทำงานได้ปกติไหม การตรวจหา Nutrigenetics จะบอกคุณได้ว่า ประสิทธิภาพของยีนที่คุณมี ทำให้คุณมีความเสี่ยงต่อสภาวะไตรกลีเซอไรด์สูงหรือไม่
- สมาคมโรคหัวใจแห่งอเมริกา หรือ The American Heart Association (AHA) ได้กล่าวถึงความสัมพันธ์ของ อาหาร- Nutrigenetics –โรคหัวใจ ว่า หากเราได้รับรู้อาหารที่เหมาะสมกับเราและได้รับอาหารที่เหมาะกับเราจริงๆ จะเป็นการป้องกัน การเกิดโรคหัวใจได้เป็นอย่างดี
ข้อมูลในส่วนนี้ หากเรารู้เกิดประโยชน์อะไรบ้าง
- อาหารที่เหมาะกับร่างกายเรา ทำให้ร่างกายรับและนำไปใช้ได้อย่างเต็มที่ และร่างกายไม่เสื่อม จากการกำจัดของส่วนเกินที่ร่างกายไม่ได้ใช้ทิ้งไป
- การที่เราทราบสารอาหารที่เหมาะกับตัวเราเองตั้งแต่อายุยังน้อย จะเป็นการวางแผนการจัดการ การรับประทานอาหารอย่างถูกวิธี เพื่อให้มีสุขภาพที่สมบูรณ์แข็งแรง และ ทั้งยังเป็นการชะลอโอกาสเสี่ยงในการเกิดโรคต่าง ๆ
- การเริ่มต้นที่ถูกต้องคือ การเริ่มต้นของคำว่า “Good Life”
เอกสารอ้างอิง
1. De Caterina R, Martinez JA, Kohlmeier M, editors. Principles of nutrigenetics and nutrigenomics: fundamentals of individualized nutrition. London: Academic Press; 2020.
2. Ferguson LR. Nutrigenomics and nutrigenetics in functional foods and personalized nutrition. Boca Raton: CRC Press; 2014.
3. Roper JA. Genetic determination of nutritional requirements. Proc Nutr Soc. 1960;19:39–45.
4. Brennan RO, Mulligan WC. Nutrigenetics: new concepts for relieving hypoglycemia. New York: M. Evans & Co; 1975.
5. Fogg-Johnson N, Merolli A. Nutrigenomics: the next wave in nutrition research. Nutraceuticals World. 2000;3:86–95.
6. Simopoulos AP. Editorial. J Nutrigenet Nutrigenomics. 2008;1:2–3.
7.• Mutch DM, Zulyniak MA, Rudkowska I, et al. Lifestyle genomics: addressing the multifactorial nature of personalized health. Lifestyle Genomics. 2018;11:1–8 In this editorial, the authors discuss the change from the Journal of Nutrigenetics and Nutrigenomics to Lifestyle Genomics. One major contributor to the change is that lifestyle factors other than diet have a significant impact on health and disease.
8. Ordovas JM, Mooser V. Nutrigenomics and nutrigenetics. Curr Opin Lipidol. 2004;15:101–8.
9. Cornelis MC. Coffee intake. Prog Mol Biol Transl Sci. 2012;108: 293–322.
10. Thorn CF, Aklillu E, McDonagh EM, et al. PharmGKB summary: caffeine pathway. Pharmacogenet Genomics. 2012;22:389–95.
11. Carlberg C, Ulven SM, Molnár F, editors. Nutrigenomics. Basel: Springer; 2016.
12. Sales NMR, Pelegrini PB, Goersch MC. Nutrigenomics: definitions and advances of this new science. J Nutr Metab 2014. http:// downloads.hindawi.com/journals/jnme/2014/202759.pdf. Accessed 12 Jan 2020.
13. Solanky KS, Bailey NJ, Beckwith-Hall BM, et al. Biofluid 1H NMR-based metabonomic techniques in nutrition research— metabolic effects of dietary isoflavones in humans. J Nutr Biochem. 2005;16:236–44.
14. Dimitrov DV. The human gutome: nutrigenomics of the host–microbiome interactions. OMICS. 2011;15:419–30.
15.•• Ordovas JM, Ferguson LR, Tai ES, et al. Personalised nutrition and health. Br Med J. 2018;361. https://www.bmj.com/content/bmj/ 361/bmj.k2173.full.pdf. Accessed 10 Feb 2020. The authors 342 Curr Nutr Rep (2020) 9:338–345 Content courtesy of Springer Nature, terms of use apply. Rights reserved.
review the current state of personalized nutrition and its role in healthcare. Although they acknowledge that personalized nutrition is important for providing quality healthcare, there are several challenges facing its implementation in healthcare.
16. Simopoulos AP, Milner JA, editors. Personalized nutrition: translating nutrigenetic/nutrigenomic research into dietary guidelines. Basel: Karger; 2010.
17. Hunter DJ, Reddy KS. Noncommunicable diseases. N Engl J Med. 2013;369:1336–43.
18. NCD Countdown 2030 Collaborators. NCD Countdown 2030: Worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet. 2018;392:1072–88.
19. World Health Organization. Noncommunicable diseases. 2018. https:// www.who.int/news-room/fact-sheets/detail/noncommunicablediseases. Accessed 2 Jan 2020.
20.•• Egger G, Binns A, Rössner S, Sagner M. Lifestyle medicine: lifestyle, the environment and preventive medicine in health and disease. 3rd ed. London: Academic Press; 2017. A very important collection of essays on lifestyle medicine. The topics range from the foundations of lifestyle medicine to its application to chronic diseases, as well as to its role in the future of healthcare.
21. Galabos L, Sturchio JL, Whitehead RC, editors. Noncommunicable diseases in the developing world: addressing gaps in global policy and research. Baltimore: The Johns Hopkins University Press; 2014.
22.• Jaacks LM, Vandevijvere S, Pan A, et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7:231–40 This is an important article on examining the obesity transition over the past four decades. The authors propose a four-stage model to account for the transition. Their goal is to provide guidance for researchers and policy makers to stem the transition in the future.
23. Kim R, Lee DH, Subramanian SV. Understanding the obesity epidemic. Br Med J. 2019;366 https://www.bmj.com/content/366/ bmj.l4409. Accessed 24 Jan 2020.
24.• Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98 In this review article, the author discusses not only the pandemic nature of global obesity but also its regional differences. He addresses the challenges facing the translation of our understanding of what causes obesity into actionable treatment and prevention.
25. World Health Organization. Obesity and overweight. 2018. https:// www.who.int/news-room/fact-sheets/detail/obesity-andoverweight. Accessed 2 Jan 2020.
26. GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377: 13–27.
27. Townshend T, Lake A. Obesogenic environments: current evidence of the built and food environments. Perspect Public Health. 2017;137:38–44.
28.• Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 2018;6:223–36 The authors review
the more than 300 SNPs identified through GWAS associated with obesity. They discuss the importance of these SNPs for understanding the complexity of obesity in terms of lifestyle and environmental interactions.
29. Loos RJ, Yeo GS. The bigger picture of FTO—the first GWASidentified obesity gene. Nat Rev Endocrinol. 2014;10:51–61.
30. Brunkwall L, Ericson U, Hellstrand S, et al. Genetic variation in the fat mass and obesity-associated gene (FTO) in association with food preferences in healthy adults. Food Nutr Res 2013;57. https://foodandnutritionresearch.net/index.php/fnr/article/view/ 529/861. Accessed 29 April 2020.
31.• Drabsch T, Holzapfel C. A scientific perspective of personalized gene-based dietary recommendations for weight management. Nutrients. 2019;11 https://www.mdpi.com/2072-6643/11/3/617. Accessed 28 Dec 2019. The authors discuss the problems associated with “one size fits all” diets. They go on to review current studies on gene-based personalized nutrition and propose that human intervention studies are required to provide the evidence needed for gene-based dietary recommendations.
32. Heianza Y, Qi L. Gene-diet interaction and precision nutrition in obesity. Int J Mol Sci 2017;18. https://www.mdpi.com/1422-0067/ 18/4/787. Accessed 20 Feb 2020.
33. Khaodhiar L, McCowen KC, Blackburn GL. Obesity and its comorbid conditions. Clin Cornerstone. 1999;2:17–31.
34. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4 4 million participants. Lancet. 2016;387:1513–30.
35. Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes. 2014;7:587–91.
36. Grarup N, Sandholt CH, Hansen T, et al. Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia. 2014;57:1528–41.
37. Unnikrishnan R, Pradeepa R, Joshi SR, et al. Type 2 diabetes: demystifying the global epidemic. Diabetes. 2017;66:1432–42.
38. Nguyen-Tu MS, da Silva XG, Leclerc I, et al. Transcription factor7–like 2 (TCF7L2) gene acts downstream of the Lkb1/Stk11 kinase to control mTOR signaling, β cell growth, and insulin secretion. J
Biol Chem. 2018;293:14178–89.
39. Berná G, Oliveras-López M, Jurado-Ruíz E, et al. Nutrigenetics and nutrigenomics insights into diabetes etiopathogenesis. Nutrients. 2014;6:5338–69.
40. Harrington JM, Phillips CM. Nutrigenetics: bridging two worlds to understand type 2 diabetes. Curr Diab Rep. 2014;14. https://doi.org/ 10.1007/s11892-014-0477-1 Accessed 20 Dec 2019.
41. Ortega Á, Berná G, Rojas A, et al. Gene-diet interactions in type 2 diabetes: the chicken and egg debate. Int J Mol Sci 2017; 18. https:// www.mdpi.com/1422-0067/18/6/1188. Accessed 12 Dec 2019.
42. Zimmet PZ, Magliano DJ, Herman WH, et al. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2014;2:56–64.
43. World Health Organization. Cancer. 2018; https://www.who.int/ news-room/fact-sheets/detail/cancer. Accessed 12 Jan 2020.
44. Elsamanoudy AZ, Neamat-Allah MAM, Mohammad FAH, et al. The role of nutrition related genes and nutrigenetics in understanding the pathogenesis of cancer. J Microsc Ultrastruct. 2016;4:115– 22.
45.• Patel A, Pathak Y, Patel J, et al. Role of nutritional factors in pathogenesis of cancer. Food Qual Saf. 2018;2:27–36 The authors discuss the role of nutrients, especially micronutrients, in terms of modulating the mechanism of carcinogenesis. They also explore the relationship between these nutrients and genetic expression as it relates to the etiology of cancer.
46. Rohan TE, Bain CJ. Diet in the etiology of breast cancer. Epidemiol Rev. 1987;9:120–45.
47. Chittiboyina S, Chen Z, Chiorean EG, et al. The role of the folate pathway in pancreatic cancer risk. PLoS One. 2018:13. https://doi. org/10.1371/journal.pone.0193298 Accessed 15 Jan 2020.
48. Choi SW, Mason JB. Folate and carcinogenesis: an integrated scheme. J Nutr. 2000;130:129–32.
49. Kadayifci FZ, Zheng S, Pan Y-X. Molecular mechanisms underlying the link between diet and DNA methylation. Int J Mol Sci 2018;19. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC6320837/pdf/ijms-19-04055.pdf. Accessed 30 April 2020.
50. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
51. Tang PK. Consume, digest, and expire: the risks of domesticated carcinogens. Lancet Oncol. 2016;17:24–5. Curr Nutr Rep (2020) 9:338–345 343 Content courtesy of Springer Nature, terms of use apply. Rights reserved.
52. Ardekani AM, Jabbari S. Nutrigenomics and cancer. Avicenna J Med Biotechnol. 2009;1:9–17.
53. Nicastro HL, Trujillo EB. Milner JA. Nutrigenomics Cancer Prev Curr Nutr Rep. 2012;1:37–43.
54. Braicu C, Mehterov N, Vladimirov B, et al. Nutrigenomics in cancer: revisiting the effects of natural compounds. Semin Cancer Biol. 2017;46:84–106.
55. Berghe WV. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol Res. 2012;65:565–76.
56. Marcum JA. The cancer epigenome: a review. J Biotechnol Biomed. 2019;2:67–83.
57.• Irimie AI, Braicu C, Pasca S, et al. Role of key micronutrients from nutrigenetic and nutrigenomic perspectives in cancer prevention. Medicina. 2019;55 https://www.mdpi.com/1010-660X/55/6/283.
Accessed 28 Dec 2019. In this rather comprehensive review, the authors discuss the various key micronutrients, such as vitamins, selenium, and dietary fiber, involved in carcinogenesis and its prevention. Importantly, they frame their discussion in terms of the hallmarks of cancer.
58. Calado A, Neves PM, Santos T, et al. The effect of flaxseed in breast cancer: a literature review. Front Nutr. 2018;5. https://doi. org/10.3389/fnut.2018.00004/full Accessed 24 Jan 2020.
59. De Silva SF, Alcorn J. Flaxseed lignans as important dietary polyphenols for cancer prevention and treatment: chemistry, pharmacokinetics, and molecular targets. Pharmaceuticals. 2019;12. https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC6630319/pdf/ pharmaceuticals-12-00068.pdf. Accessed 30 April 2020.
60. Martín-Hernández R, Reglero G, Dávalos A. Data mining of nutrigenomics experiments: identification of a cancer protective gene signature. J Funct Foods. 2018;42:380–6.
61. Royston KJ, Paul B, Nozell S, et al. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Exp Cell Res. 2018;368:67–74.
62. Kang JX. Nutrigenomics and cancer therapy. J Nutrigenet Nutrigenomics. 2013;6:I–II.
63. Dagenais GR, Leong DP, Rangarajan S, et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet. 2020;395:785–94.
64. Wilmot KA, O’Flaherty M, Capewell S, et al. Coronary heart disease mortality declines in the United States from 1979 through 2011: evidence for stagnation in young adults, especially women. Circulation. 2015;132:997–1002.
65. Anand SS, Hawkes C, De Souza RJ, et al. Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system: a report from the workshop convened by the World Heart Federation. J Am Coll Cardiol. 2015;66:1590–614.
66.• Brandhorst S, Longo VD. Dietary restrictions and nutrition in the prevention and treatment of cardiovascular disease. Circ Res. 2019;124:952–65 The authors review the various risk factors associated with cardiovascular diseases with respect to dietary factors. They frame their review in terms of four pillars: basic research, epidemiology, clinical studies, and centenarian studies.
67. Sacks FM, Lichtenstein AH, Wu JH, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136:e1–e23.
68. Lichtenstein AH. Dietary fat and cardiovascular disease: ebb and flow over the last half century. Adv Nutr. 2019;10:S332–9.
69. Briggs MA, Petersen KS, Kris-Etherton PM. Saturated fatty acids and cardiovascular disease: replacements for saturated fat to reduce cardiovascular risk. Healthcare. 2017;5. https://www.mdpi.com/ 2227-9032/5/2/29. Accessed 2 March 2020.
70. Corella D, Ordovas JM. Nutrigenomics in cardiovascular medicine. Circ Cardiovasc Genet. 2009;2:637–51.
71. Nuno NB, Heuberger R. Nutrigenetic associations with cardiovascular disease. Rev Cardiovasc Med. 2014;15:217–25.
72. Merched AJ, Chan L. Nutrigenetics and nutrigenomics of atherosclerosis. Curr Atheroscler Rep 2013;15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003879/pdf/nihms572659.pdf. Accessed 29 April 2020.
73. Lovegrove JA, Gitau R. Personalized nutrition for the prevention of cardiovascular disease: a future perspective. J Hum Nutr Diet. 2008;21:306–16.
74. Ferguson F, Allayee H, Gerszten RE, et al. Nutrigenomics, the microbiome, and gene-environment interactions: new directions in cardiovascular disease research, prevention, and treatment: a scientific statement from the American Heart Association. Circ Cardiovasc Genet. 2016;9:291–313.
75. Hurlimann T, Menuz V, Graham J, et al. Risks of nutrigenomics and nutrigenetics? What the scientists say. Genes Nutr. 2014;9. https://doi.org/10.1007/s12263-013-0370-6 Accessed 10 March 2020.
76. Reddy VS, Palika R, Ismail A, Pullakhandam R, Reddy GB. Nutrigenomics: opportunities & challenges for public health nutrition. Indian J Med Res. 2018;148:632–41.
77. Zeisel SH. A grand challenge for nutrigenomics. Front Genet. 2010;1. https://doi.org/10.3389/fgene.2010.00002/full .
78. Mathers JC. Nutrigenomics in the modern era. Proc Nutr Soc. 2017;76:265–75.
79. Ravi Subbiah MR. Understanding the nutrigenomic definitions and concepts at the food–genome junction. OMICS. 2008:12229–35.
80. Portin P, Wilkins A. The evolving definition of the term “gene”. Genetics. 2017;205:1353–64.
81. Godard B, Hurlimann T. Nutrigenomics for global health: ethical challenges for underserved populations. Curr Pharmacogenomics Person Med. 2009;7:205–14.
82. Ferguson LR, De Caterina R, Görman U, et al. Guide and position of the International Society of Nutrigenetics/Nutrigenomics on personalized nutrition: part 1— fields of precision nutrition. J Nutrigenet Nutrigenomics. 2016;9:12–27.
83. Kohlmeier M, De Caterina R, Ferguson LR, et al. Guide and position of the International Society of Nutrigenetics/Nutrigenomics on personalized nutrition: part 2—ethics, challenges and endeavors of precision nutrition. J Nutrigenet Nutrigenomics. 2016;9:28–46.
84. Castle D, Ries NM. Ethical, legal and social issues in nutrigenomics: the challenges of regulating service delivery and building health professional capacity. Mutat Res. 2007;622:138–43.
85. Pavlidis C, Patrinos GP, Katsila T. Nutrigenomics: a controversy. Appl Transl Genom. 2015;4:50–3.
86. Dinu M, Pagliai G, Casini A, et al. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr. 2018;72:30–43.
87. D’Innocenzo S, Biagi C, Lanari M. Obesity and the Mediterranean diet: a review of evidence of the role and sustainability of the Mediterranean diet. Nutrients. 2019;11. https://www.mdpi.com/ 2072-6643/11/6/1306. Accessed 12 March 2020.
88. Esposito K, Maiorino MI, Bellastella G, et al. Mediterranean diet for type 2 diabetes: cardiometabolic benefits. Endocrine. 2017;56: 27–32.
89. Mentella MC, Scaldaferri F, Ricci C, et al. Cancer and Mediterranean diet: a review. Nutrients. 2019;11. https://www. mdpi.com/2072-6643/11/9/2059. Accessed 29 Feb 2020.
90. Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health: a critical review. Circ Res. 2019;124:779–98. 344 Curr Nutr Rep (2020) 9:338–345 Content courtesy of Springer Nature, terms of use apply. Rights reserved.
91. Marantz PR. Rethinking dietary guidelines. Crit Rev Food Sci Nutr. 2010;50:17–8.
92. Iacoviello L. Perspectives and challenges for adoption of the Mediterranean diet. Eur J Pub Health. 2018;28:261–2.
93. Kaput J. Nutrigenomics research for personalized nutrition and medicine. Curr Opin Biotechnol. 2008;19:110–20.
94. Palou A. From nutrigenomics to personalised nutrition. Genes Nutr. 2007;2:5–7.
95. Bush CL, Blumberg JB, El-Sohemy A, et al. Toward the definition of personalized nutrition: a proposal by The American Nutrition Association. J Am Coll Nutr. 2020;39:5–15 In this important article from the proceedings of the 2019 American College of Nutrition Meeting, the authors propose a standard definition for personalized nutrition for guiding research, clinical practice, and healthcare policy formation. They conclude with a discussion of the challenges facing personalized nutrition in
the twenty-first century.
96. Komduur RH, Korthals M, Te Molder H. The good life: living for health and a life without risks? on a prominent script of nutrigenomics. Br J Nutr. 2008;101:307–16.
97. Aruoma OI, Hausman-Cohen S, Pizano J, et al. Personalized nutrition: translating the science of nutrigenomics into practice. J Am Coll Nutr. 2019;38:287–301 In this important article from the proceedings of the 2018 American College of Nutrition Meeting, the authors discuss the translation of nutrigenomics into personalized clinical practice and the challenges facing it.
98. Loos RJF. From nutrigenomics to personalizing diets: are we ready for precision medicine? Am J Clin Nutr. 2019;109:1–2